DOI: 10.1111/ifb.14783

# **REGULAR PAPER**

# Molecular systematics of the Awaous banana complex (River gobies; Teleostei: Oxudercidae)

Caleb D. McMahan<sup>1</sup> Diego J. Elías<sup>2</sup> Vue Li<sup>2</sup> Omár Domínguez-Domínguez<sup>3</sup> | Sheila Rodriguez-Machado<sup>2</sup> | Alejandra Morales-Cabrera<sup>4</sup> | Diana Velásquez-Ramírez<sup>4</sup> | Kyle R. Piller<sup>5</sup> 💿 | | Wilfredo A. Matamoros<sup>6</sup> • Prosanta Chakrabarty<sup>2</sup>

<sup>1</sup>Field Museum of Natural History, Chicago, Illinois

<sup>2</sup>LSU Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana

<sup>3</sup>Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico

<sup>4</sup>Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala

<sup>5</sup>Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana

<sup>6</sup>Colección de Ictiología, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Mexico

### Correspondence

Caleb D. McMahan, Field Museum of Natural History, 1400 S. Lake Shore Dr., Chicago, IL 60605, USA. Email: cmcmahan@fieldmuseum.org

# Abstract

Diadromous fishes can exhibit interesting evolutionary and population-level patterns given their use of freshwater and marine environments as part of their life histories. The River goby genus Awaous are prominent members of riverine ichthyofaunas and occur throughout Atlantic and Pacific slopes of the Americas from the southern United States to Ecuador and Brazil. Here we study the widespread and polymorphic Awaous banana complex to assess phylogeographic patterns and test previous hypotheses that all populations of this species in the Americas belong to the same species. Analysis of sequence data based on the mitochondrial cytochrome oxidase I gene shows multiple clades within the Atlantic and Pacific basins, which correspond to previously described species. Additionally, haplotype analysis demonstrates unique and unconnected networks between these species. Within these clades we document biogeographic patterns that are congruent with results of other co-occurring diadromous species, as well as a novel biogeographic pattern for the region. Our results support the recognition of distinct species of Awaous in the Atlantic (A. banana and A. tajasica) and Pacific (A. transandeanus) basins. These results are concordant with previously established morphological characters permitting the separation of these species.

### KEYWORDS

biogeography, goby, Middle America, Neotropics, phylogeography, rivers

#### INTRODUCTION 1

Geographically widespread species are frequently the basis of studies to test hypotheses related to systematics, phylogeography and taxonomy. This has certainly been the case for freshwater fishes in Middle America, the region comprising Mexico, Central America and the Greater Antilles, and has included studies of catfishes (Perdices et al., 2002), livebearers (Marchio & Piller, 2013) and cichlids (McMahan et al., 2017). Compared to stenohaline or euryhaline fishes, diadromous fishes can exhibit interesting patterns of evolutionary

history and population structure given their occupancy of both freshwater and marine systems as integral parts of their life histories. These structured biogeographic patterns have been observed in several diadromous taxa in Middle America, including sleepers (family Eleotridae, Guimarães-Costa et al., 2017 and Galván-Quesada et al., 2016) and mullets (family Mugilidae, Díaz-Murillo et al., 2017 and McMahan et al., 2013). Intraspecific divergence was recovered across all of these taxa, with different lineages present in Atlantic and Pacific-slope rivers, as well as multiple lineages within each slope.

2

 TABLE 1
 Accession and locality data for tissue samples from specimens sequenced for this study

|    | Tissue catalogue no. | Accession no. | Country     | Locality              | Latitude  | Longitude  |
|----|----------------------|---------------|-------------|-----------------------|-----------|------------|
| 1  | STRI 14696           | MG496094      | Nicaragua   | Río Escalante         | 11.52800  | -86.16470  |
| 2  | UMSNH 10674          | MZ130163      | Mexico      | Estero Barra de Pichi | 18.97486  | -102.32623 |
| 3  | UMSNH 11104          | MZ130164      | Mexico      | Lázaro Cárdenas       | 18.03361  | -102.55917 |
| 4  | UMSNH 11105          | MZ130165      | Mexico      | Lázaro Cárdenas       | 18.03361  | -102.55917 |
| 5  | UMSNH 11365          | MZ130166      | Mexico      | Huahua                | 18.17769  | -103.00731 |
| 6  | UMSNH 11474          | MZ130167      | Mexico      | Cachan                | 18.23486  | -103.24728 |
| 7  | UMSNH 12523          | MZ130168      | Mexico      | Mexcalhuacán          | 18.05603  | -102.65836 |
| 8  | SLU-TC 244           | MZ130169      | Mexico      | Río Mascota           | 20.72667  | -105.16111 |
| 9  | SLU-TC 1051          | MZ130170      | Mexico      | Río Ayuquila          | 19.68188  | -104.08447 |
| 10 | LSUMZ-F 2268         | MZ130171      | El Salvador | Río Cangrejera        | 13.47428  | -89.18172  |
| 11 | LSUMZ-F 2265         | MZ130172      | El Salvador | Río Cangrejera        | 13.47428  | -89.18172  |
| 12 | UMSNH 22680          | MZ130173      | El Salvador | Mizata                | 13.51105  | -89.59551  |
| 13 | LSUMZ-F 2269         | MZ130174      | El Salvador | Río Cangrejera        | 13.47428  | -89.18172  |
| 14 | UMSNH 11375          | MZ130175      | Mexico      | Huahua                | 18.17769  | -103.00731 |
| 15 | SLU-TC 1004          | MZ130176      | Mexico      | Río Sinaloa           | 25.95550  | -109.05369 |
| 16 | LSUMZ-F 2960         | MZ130177      | Nicaragua   | Río Soledad           | 12.13144  | -86.64275  |
| 17 | UMSNH 22722          | MZ130178      | El Salvador | Mizata                | 13.51105  | -89.59551  |
| 18 | UMSNH 11364          | MZ130179      | Mexico      | Huahua                | 18.17769  | -103.00731 |
| 19 | UMSNH 20900          | MZ130180      | Mexico      | Estero Chucutitan     | 18.01226  | -102.45879 |
| 20 | SLU-TC 250           | MZ130181      | Mexico      | Río Tehuantepec       | 16.32958  | -95.23583  |
| 21 | SLU-TC 1699          | MZ130182      | Mexico      | Río Colotepec         | 15.83771  | -97.02761  |
| 22 | LSUMZ-F 2959         | MZ130183      | Nicaragua   | Río Soledad           | 12.13144  | -86.64275  |
| 23 | UMSNH 11597          | MZ130184      | Mexico      | Río Coahuayana        | 18.68478  | -103.73717 |
| 24 | SLU-TC 857           | MZ130185      | Mexico      | Río Ayuquila          | 19.68188  | -104.08447 |
| 25 | LSUMZ-F 2395         | MZ130186      | El Salvador | Río Banderas          | 13.58772  | -89.73486  |
| 26 | LSUMZ-F 2398         | MZ130187      | El Salvador | Río Banderas          | 13.58772  | -89.73486  |
| 27 | UMSNH 20901          | MZ130188      | Mexico      | Estero Chucutitan     | 18.01226  | -102.45879 |
| 28 | SLU-TC 2314          | MZ130189      | Mexico      | Río Ayuquila          | 19.66594  | -104.08539 |
| 29 | UMSNH 8547           | MZ130190      | Mexico      | Estero Teolán         | 18.07231  | -102.73108 |
| 30 | STRI 11168           | MG936712      | Panama      | Río Santa Maria       | 8.41320   | -81.04850  |
| 31 | STRI 11209           | MG936725      | Panama      | Río Bayano            | 9.22360   | -79.09220  |
| 32 | LSUMZ-F 1404         | MZ130159      | Costa Rica  | Río Claro             | 8.68025   | -83.00700  |
| 33 | LSUMZ-F 1403         | MZ130160      | Costa Rica  | Río Claro             | 8.68025   | -83.00700  |
| 34 | LSUMZ-F 1822         | MZ130161      | Panama      | Río Bayano            | 8.61931   | -78.16981  |
| 35 | STRI 11008           | MG936713      | Panama      | Río Cocle del Sur     | 8.62100   | -80.44900  |
| 36 | STRI 4407            | MG936717      | Panama      | Río Tuira             | 8.12330   | -77.54390  |
| 37 | STRI 2091            | MG496095      | Costa Rica  | Río Pirris            | 9.51990   | -84.32500  |
| 38 | STRI 92              | MG936715      | Panama      | Río Chiriqui          | 8.20380   | -81.58610  |
| 39 | LSUMZ-F 1821         | MZ130162      | Panama      | Río Bayano            | 8.61931   | -78.16981  |
| 40 | STRI 164             | MG936716      | Panama      | Río Chiriqui          | 8.27030   | -81.86320  |
| 41 | STRI 18730           | MG936719      | Panama      | Río Tuira             | 8.66090   | -77.79330  |
| 42 | STRI 6973            | MG936714      | Panama      | Río Tuira             | 7.74250   | -77.88400  |
| 43 | LPB 37064            | FBCRB235-09   | Brazil      | Rio Escuro            | -23.44200 | 45.19100   |
| 44 | LPB 37091            | FBCRB240-09   | Brazil      | coastal São Paulo     | -23.54700 | 45.08700   |
| 45 | LBP 38263            | FBCRB-254-09  | Brazil      | Rio Escuro            | -23.44200 | 45.19100   |
| 46 | MCNIP 1478           | MUCU 148-14   | Brazil      | Minas Gerais, Nanuque | -18.09970 | -40.44780  |

# TABLE 1 (Continued)

|    | Tissue catalogue no. | Accession no. | Country       | Locality              | Latitude  | Longitude   |
|----|----------------------|---------------|---------------|-----------------------|-----------|-------------|
| 47 | LBP 38264            | FBCRB-255-09  | Brazil        | Rio Escuro            | -23.44200 | -45.19100   |
| 48 | LBP 37088            | FBCRB237-09   | Brazil        | coastal São Paulo     | -23.54700 | -45.08700   |
| 49 | LBP 38262            | FBCRB-253-09  | Brazil        | Rio Escuro            | -23.44200 | -45.19100   |
| 50 | LBP 37090            | FBCRB239-09   | Brazil        | coastal São Paulo     | -23.54700 | -45.08700   |
| 51 | LBP 37065            | FBCRB236-09   | Brazil        | Rio Escuro            | -23.44200 | -45.19100   |
| 52 | LBP 38261            | FBCRB252-09   | Brazil        | Rio Escuro            | -23.44200 | -45.19100   |
| 53 | LBP 37089            | FBCRB238-09   | Brazil        | coastal São Paulo     | -23.54700 | -45.08700   |
| 54 | MCNIP 1478           | MUCU 135-14   | Brazil        | Minas Gerais, Nanuque | -18.09970 | -40.44780   |
| 55 | UMSNH 5530           | MZ130154      | Mexico        | Río Pantepec          | 20.73200  | -98.02269   |
| 56 | UMSNH 3468           | MZ130155      | Mexico        | Avila Camacho         | 20.55128  | -97.87250   |
| 57 | UMSNH 5594           | MZ130156      | Mexico        | Puente Cazones        | 20.63536  | -97.39925   |
| 58 | SLU-TC 4903          | MZ130157      | Mexico        | Rio Tecolutla         | 20.43722  | -97.16554   |
| 59 | SLU-TC 4902          | MZ130158      | Mexico        | Rio Tecolutla         | 20.43722  | -97.16554   |
| 60 | ANC 12.2.454         | MZ130131      | Cuba          | Río Cabagán           | 21.83878  | -80.10561   |
| 61 | STRI 13919           | MG496096      | Nicaragua     | Río Coco              | 13.51290  | -85.80990   |
| 62 | STRI 1732            | MG936718      | Panama        | Río Acla              | 8.84590   | -77.68820   |
| 63 | STRI 2970            | MG936721      | Panama        | Río Cascajal          | 9.54640   | -79.60620   |
| 64 | LSUMZ-F 2146         | MZ130134      | Panama        | Río Changuinola       | 9.04067   | -82.29089   |
| 65 | LSUMZ-F 2175         | MZ130135      | Panama        | Río Changuinola       | 9.25069   | -82.41044   |
| 66 | LSUMZ-F 3258         | MZ130136      | Honduras      | Río Motagua           | 15.66678  | -88.20626   |
| 67 | SLU-TC 1876          | MZ130137      | Jamaica       | Swift River           | 18.19447  | -76.57952   |
| 68 | UMSNH 16512          | MZ130138      | Venezuela     | Puente el Encanto     | 10.48873  | -66.11419   |
| 69 | ANC 12.2.454         | MZ130139      | Cuba          | Río Cabagán           | 21.83878  | -80.10561   |
| 70 | ANC 12.2.454         | MZ130140      | Cuba          | Río Cabagán           | 21.83878  | -80.10561   |
| 71 | STRI 13918           | MG496093      | Nicaragua     | Río Coco              | 13.51290  | -85.80990   |
| 72 | STRI 3717            | MG736722      | Panama        | Río Chagres           | 9.41170   | -78.64580   |
| 73 | LSUMZ-F 2145         | MZ130141      | Panama        | Río Changuinola       | 9.04067   | -82.29089   |
| 74 | LSUMZ-F 4000         | MZ130142      | Honduras      | Río Patuca            | 14.28901  | -85.12000   |
| 75 | LSUMZ-F 2115         | MZ130143      | Panama        | Río Garamo            | 8.90861   | -82.18800   |
| 76 | USNM 447326          | MT455852      | United States | NC: Bouge Sound       | 34.72310  | -76.75030   |
| 77 | STRI 4986            | NC036224      | Panama        | Bocas del Toro        | 9.36000   | -82.59000   |
| 78 | LSUMZ-F 1959         | MZ130152      | Panama        | Río Chagres           | 9.57658   | -79.48342   |
| 79 | ANC 12.2.453         | MZ130153      | Cuba          | Río San Sebastian     | 22.29839  | -83.80737   |
| 80 | ANC 12.2.454         | MZ130144      | Cuba          | Río Cabagán           | 21.83878  | -80.10561   |
| 81 | LSUMZ-F 3256         | MZ130145      | Honduras      | Río Motagua           | 15.66678  | -88.20626   |
| 82 | LSUMZ-F 1722         | MZ130146      | Costa Rica    | Río Sixaola           | 9.65453   | -82.76372   |
| 83 | SLU-TC 2132          | MZ130147      | Jamaica       | Milk River            | 17.88060  | -77.34528   |
| 84 | SLU-TC 3261          | MZ130148      | Belize        | Temash River          | 16.04068  | -89.02927   |
| 85 | LSUMZ-F 3257         | MZ130149      | Honduras      | Río Motagua           | 15.66678  | -88.20626   |
| 86 | LSUMZ-F 4143         | MZ130150      | Honduras      | Río Patuca            | 14.25099  | -86.16664   |
| 87 | LSUMZ-F 6340         | MZ130151      | Honduras      | Río Patuca            | 14.34151  | -85.49107   |
| 88 | STRI 1354            | MG936723      | Panama        | Río Cocle del Norte   | 8.81870   | -80.55300   |
| 89 | USNM 447327          | MT455549      | United States | NC: Bouge Sound       | 34.72310  | -76.75030   |
| 90 | USNM 447328          | MT455993      | United States | NC: Bouge Sound       | 34.72310  | -76.75030   |
| 91 | STRI 6858            | MG936720      | Panama        | Bocas del Toro        | 9.04060   | -82.28580   |
| 92 | USNM 447325          | MT455114      | United States | NC: Bouge Sound       | 34.72310  | -76.75030   |
|    |                      |               |               |                       |           | (Continues) |

# TABLE 1 (Continued)

|            | Tissue catalogue no. | Accession no. | Country          | Locality    | Latitude | Longitude |
|------------|----------------------|---------------|------------------|-------------|----------|-----------|
| 93         | ANC 12.2.454         | MZ130132      | Cuba             | Río Cabagán | 21.83878 | -80.10561 |
| 94         | LSUMZ-F 1958         | MZ130133      | Panama           | Río Chagres | 9.57658  | -79.48342 |
| Outgroups: |                      |               |                  |             |          |           |
| 95         | A. grammepomus       | MH721183      | Vietnam          | -           | -        | -         |
| 96         | A. ocellaris         | KC959856      | Philippines      | -           | -        | -         |
| 97         | A. ocellaris         | JQ431473      | French Polynesia | -           | -        | -         |
| 98         | A. grammepomus       | KU692309      | Indonesia        | -           | -        | -         |

Note. Acronyms follow Sabaj (2020). Accession numbers refer to GenBank or BOLD databases; BOLD accession numbers are italicized.

Gobies (order Gobiiformes) are an incredibly species-rich group of fishes, with an extraordinary range of sizes, behaviours and morphologies; they occupy diverse micro-habitats in primarily marine environments but also some estuarine and freshwater habitats (Tornabene *et al.*, 2013). Diadromous riverine gobies of the genus Awaous are widespread in tropical and subtropical systems and currently comprise some 20 species (Fricke *et al.*, 2021). These gobies are a prominent component of the ichthyofauna in rivers throughout the Atlantic and Pacific slopes of the Americas, from the southern United States (in the Atlantic) to Brazil and Ecuador (Watson, 1992).

Species-level identifications of members of this genus have been difficult. Several previously recognized species of Awaous from the Americas are now considered synonyms of highly variable taxa such as A. banana (Valenciennes, 1837), A. transandeanus (Günther, 1861) and A. tajasica (Lichtenstein, 1822). These three species have most frequently been used and treated as valid by authors. Awaous flavus (Valenciennes, 1837) is the additional member of the genus occurring in the Western Atlantic in South America. However, this species is not a member of the A. banana complex and not included in the present study. Awaous flavus is the sole member of the monotypic subgenus Euctenogobius and readily distinguished from congeners (Lasso-Alcalá & Lasso, 2008). The most recent systematic review of the A. banana complex was conducted by Watson (1996), who revised the subgenus Chonophorus and concluded there was insufficient evidence to support the existence of separate species of Awaous on Atlantic and Pacific slopes of the Americas, recognizing A. transandeanus as a synonym of A. banana and restricting A. tajasica to Brazil south of the mouth of the Amazon River. Since then, some authors have followed these designations; however, other authors have maintained separate Pacific and Atlantic species (Bussing, 1998; Miller, 2005) given that populations in the two basins could be morphologically distinguished. Furthermore, recent work has provided evidence of divergence between the mitochondrial genomes of Awaous specimens from the Pacific and Atlantic slopes of Panama based on comparison of a single individual from each coast (Alda et al., 2018). Therefore, the objective of this study was to assess phylogeographic structure within the A. banana complex and test Watson's (1996) hypothesis that all Middle American populations belong to the same species.

### 2 | MATERIALS AND METHODS

### 2.1 | Molecular data

Specimens and tissue samples of the Awaous banana complex were collected throughout its distribution (Table 1 and Figure 1). The collection of specimens complied with all international and local permitting regulations across all countries and museums (Panama, Autoridad Nacional del Ambiente permit SC/A-17-11: Costa Rica. Museo de Zoología, Universidad de Costa Rica; Nicaragua, Ministerio del Ambiente y Recursos Naturales permit DGPN/DB/ DAP-IC-0008-2010; Honduras, Instituto Nacional de Conservación y Desarrollo Forestal, Áreas Protegidas, y Vida Silvestre permit DVS-ICF-03302009). Tissue samples were taken from fin clips and/or muscle from the right side of specimens. Specimens were then preserved in 10% formalin, transferred to 70% ethanol and deposited in the LSU Museum of Natural Science (LSUMZ). Southeastern Louisiana University Vertebrate Museum (SLU), Universidad Michoacana de San Nicolas Hidalgo (UMSNH) and Acuario Nacional de Cuba (ANC). A list of tissue samples and locality information is provided in Table 1.

Whole genomic DNA was extracted using DNeasy Tissue Kits (Qiagen, Inc., Valencia, CA, USA) following manufacturer protocols. The mitochondrial marker cytochrome oxidase I (COI) was amplified using the primers BOL-F and BOL-R, and polymerase chain reaction (PCR) followed protocols from Ward et al. (2005). The COI "barcode" (Ward et al., 2005, 2009) has been widely used to address guestions at population and species levels in freshwater and marine fishes (e.g., Pereira et al., 2013; Rees et al., 2020; Weigt et al., 2012). The PCR products were visualized on 1.0% agarose gels and sequenced at the Beckman Coulter Genomics Facility (Danvers, MA, USA) and the Pritzker Lab at the Field Museum of Natural History. Sequence data were generated for a total of 60 individuals. Chromatograms were visually examined and low-quality base pairs calls were removed in the software Geneious version 10.0.9 (Kearse et al., 2012). An additional 34 ingroup sequences were added to the dataset based on published records in GenBank and BOLD (Table 1) to include additional populations in our analyses. Awaous ocellaris (Broussonet, 1782) and A. grammepomus (Bleeker, 1849) were included as outgroup taxa. We used the Muscle algorithm (Edgar, 2004) with default parameters

FIGURE 1 Map showing sample localities for specimens and haplotype networks based on analysis of sequences from the mitochondrial COI gene for Awaous in the Eastern Pacific and Western Atlantic. Colours for sample localities correspond to recovered clades. Colours of individual haplotypes correspond to geographic localities



implemented in Geneious to generate a multiple sequence alignment that consisted of 98 sequences.

#### 2.2 Phylogenetic analyses

We evaluated the best model of nucleotide evolution for the COI dataset using PartitionFinder 2 (Lanfear et al., 2012). The best model was selected using the corrected Akaike Information Criterion (AICc; Hurvich and Tsai, 1989). We inferred a phylogenetic hypothesis under a Bayesian framework in the software Mr. Bayes 3.2.6 (Huelsenbeck et al., 2001) in the CIPRES Science gateway portal (Miller et al., 2010). Bayesian analyses were run for 12,000,000 generations sampling every 6000 generations. Sampling stationary was visually inspected in Tracer 1.7 (Rambaut et al., 2018) and we checked for effective sample size (ESS > 200) and observed average standard deviation of split frequencies (<0.01). We discarded the first 25% of sampled trees as burn-in, and bayesian posterior probabilities (BPP) were calculated using the post burn-in trees to assess support for clades. Three independent analyses were performed to assess topological congruence.

#### 2.3 Haplogroups and molecular diversity

We tested for the presence of distinct haplogroups across the distribution of the A. banana complex. Haplogroups were inferred using statistical parsimony analysis (Templeton et al., 1992) in the software TCS v.1.21 (Clement et al., 2000) with a 95% confidence limit for connection. If unconnected haplogroups were identified by the TCS analysis, the haplotype networks for each haplogroup were independently inferred. Haplotype networks were constructed using the medianjoining network (Bandelt et al., 1999) implemented in the software POPART (Leigh & Bryant, 2015). Uncorrected sequence divergence (p-distances) between haplogroups were calculated in the software MEGA v.10.1.8 (Kumar et al., 2018), and summary statistics of genetic diversity (e.g., nucleotide and haplotypic diversity) were calculated for each independent haplogroup in the software DnaSP v.6.1 (Rozas et al., 2017).

#### RESULTS 3

#### **Phylogenetic analyses** 3.1

Our final alignment consisted of 94 ingroup samples and four outgroups with an alignment length of 621 base pairs. The Bayesian inference recovered phylogenetic structure across the distribution of the Awaous banana complex (Figure 2). Our phylogenetic hypothesis recovered four well-supported clades across populations of Awaous in the Eastern Pacific and Western Atlantic basins, as well as a single clade formed by all samples of A. tajasica in the Atlantic coast of Brazil (Figure 2).

Two clades of Awaous were recovered from rivers in the Eastern Pacific basin (Figure 2). The two Pacific clades were 7.13% divergent based on COI sequences (Table 2) and were not recovered as each other's closest relatives based on phylogenetic analysis of COI sequences. The Northern Pacific clade extended from northern Mexico to just north of the Nicoya Peninsula in Costa Rica and was recovered as the sister group to the other Awaous clades (Figures 1 and 2). Populations of Awaous south of the Nicoya Peninsula formed the Southern Pacific clade. This clade was recovered as the sister group to a clade inclusive of all samples and species of Awaous distributed in the western Atlantic basin (Figure 2). The Southern Pacific clade was

6



**FIGURE 2** Bayesian phylogeny for Awaous from the Eastern Pacific and Western Atlantic based on mitochondrial COI sequences. Tip labels indicate tissue catalogue numbers; numbers in parentheses correspond to Table 1. Colours for clades correspond to sample localities in Figure 1. Bayesian posterior probabilities: ( $\bullet$ ) bpp  $\ge 0.95$ ; ( $\bullet$ ) 0.95 < bpp  $\ge 0.90$ ; ( $\bullet$ ) bpp < 0.90

**TABLE 2** Uncorrected p-distances as percentages (below diagonal) and standard deviation (above diagonal) between Awaous tajasica and the four recovered clades in the A. banana complex

|                  | A. tajasica | Caribbean | Gulf of Mexico | Southern Pacific | Northern Pacific |
|------------------|-------------|-----------|----------------|------------------|------------------|
| A. tajasica      | -           | 0.65      | 0.66           | 0.80             | 1.02             |
| Caribbean        | 3.10        | -         | 0.54           | 0.70             | 1.00             |
| Gulf of Mexico   | 2.68        | 1.86      | -              |                  |                  |
| Southern Pacific | 4.12        | 3.62      | 3.08           | -                | 1.07             |
| Northern Pacific | 7.14        | 6.79      | 6.58           | 7.13             | -                |

between 3.08% and 3.62% divergent from the Caribbean and Gulf of Mexico clades, respectively. The genetic divergence between the Southern Pacific clade and *A. tajasica* was 4.12% (Table 4).

All samples of the Atlantic members of *Awaous* were recovered as monophyletic (Figure 2), with a sister relationship (with low BPP support) between Caribbean and Gulf of Mexico lineages of A. *banana*  (1.86% sequence divergence; Table 2) and A. *tajasica* recovered as the sister group to those two clades (2.68%–3.10% sequence divergence; Table 2). Intra-clade genetic divergence was low within all recovered clades (Table 3).

# 3.2 | Haplogroups and molecular diversity

To avoid missing data in the estimation of haplogroups and molecular diversity, two sequences, *Awaous tajasica* (MUCU135-14) and *A. banana* (MG936713), were excluded from the dataset given short sequence reads. Furthermore, the alignment was truncated to a final length 615 base pairs. The TCS analysis recovered four unconnected haplogroups that were largely congruent with the clades recovered in our phylogenetic analysis. Two independent haplogroups were recovered in the Eastern Pacific basin that were congruent with the northern and southern Pacific lineages (Figure 1). Fourteen haplotypes were identified within the Northern Pacific haplogroup and this haplogroup possessed the highest haplotypic diversity (hd = 0.906; Table 4) in the region. The Southern Pacific haplogroup possessed seven haplotypes (Figure 1) and relatively lower haplotypic diversity (hd = 0.773; Table 4) in the Eastern Pacific basin.

In the Atlantic basin, two haplogroups were recovered by the TCS analysis. One haplogroup was congruent with the A. *tajasica* clade (Figures 1 and 2) and comprised all samples from the Atlantic Coast of Brazil. Six haplotypes were identified within A. *tajasica* (Figure 1) with relatively high haplotypic diversity (hd = 0.873; Table 4). The other haplogroup identified in the Atlantic basin comprised all samples from

**TABLE 3** Genetic variation and standard deviation (S.D.) within *Awaous tajasica* and the four recovered clades within the *A. banana* complex

|                  | Genetic variation | S.D.  |
|------------------|-------------------|-------|
| A. tajasica      | 0.36              | 0.15  |
| Caribbean        | 0.29              | 0.11  |
| Gulf of Mexico   | 0.00              | 0.00  |
| Southern Pacific | 0.18              | 0.077 |
| Northern Pacific | 0.29              | 0.095 |

**TABLE 4**Genetic diversity observedfor Awaous tajasica and the haplogroupsrecovered within the A. banana complex

the Caribbean lineage and the Gulf of Mexico lineage. Seventeen haplotypes were identified within the Caribbean and Gulf of Mexico clades (Figure 1 and Table 4). The Caribbean clade possessed a relatively high haplotypic diversity (hd = 0.847; Table 4) in contrast with the haplotypic diversity observed in the Gulf of Mexico clade (hd = 0.600; Table 4).

# 4 | DISCUSSION

### 4.1 | Taxonomic status

Watson (1996) considered there to be insufficient data supporting the existence of separate species of *Awaous* in Pacific and Atlantic rivers in North, Central and South America. However, subsequent authors rejected this hypothesis based on diagnosable differences between the two basins. Based on characters provided in Miller (2005), *A. banana* possesses 69–76 lateral scales and dark blotches along the sides of the body without black, vertical bars. *A. transandeanus* possesses 60–67 lateral scales and dark blotches along the sides of the body but with narrow, black vertical bars present. *A. tajasica* possess dark lateral blotches but fewer lateral scales than *A. banana* (61–66; Watson, 1996). Our phylogenetic and population-level results are concordant with these morphological differences that can be used to distinguish these species (Figure 2). Our results also support the restriction of *A. tajasica* to Brazil, south of the Amazon River (Watson, 1996).

Our results demonstrate that populations of Awaous on the Atlantic and Pacific slopes of the Americas are distinct lineages. While two clades were recovered within each ocean basin, additional data are necessary to determine if these lineages warrant species status. While available names for these lineages are tentatively available [Gobius mexicanus Günther, 1861 (Gulf of Mexico) and A. nelsoni Evermann, 1898 (northern Pacific)], the re-identification of diagnostic characters in type material and comparisons with our recovered clades will be needed to further substantiate the putative validity of these two currently synonymized species. Regardless, it is clear that at present treating A. banana and A. transandeanus as distinct species is the most robust taxonomic hypothesis and most congruent with phylogenetic and biogeographic evidence.

|                  | n  | VS | pis | н  | hd            | π                |
|------------------|----|----|-----|----|---------------|------------------|
| A. tajasica      | 11 | 6  | 4   | 6  | 0.873 (0.071) | 0.0034 (0.0005)  |
| Caribbean        | 35 | 15 | 7   | 15 | 0.847 (0.047) | 0.0029 (0.0004)  |
| Gulf of Mexico   | 5  | 1  | 1   | 2  | 0.600 (0.175) | 0.00098 (0.0003) |
| Southern Pacific | 12 | 6  | 1   | 7  | 0.773 (0.128) | 0.0018 (0.0005)  |
| Northern Pacific | 29 | 13 | 7   | 14 | 0.906 (0.039) | 0.0028 (0.0003)  |

Standard deviation in parentheses.

*Note.* H, number of haplotypes; hd, haplotype diversity; *n*, number of sequences; pis, parsimony-informative sites; vs, variable size;  $\pi$ , nucleotide diversity.

JOURNAL OF **FISH**BIOLOGY

The two clades that exist in the Atlantic basin are sister lineages with a connected haplotype network, and at present we consider these two lineages to represent genetically differentiated populations of A. banana. More work is needed to establish the existence or extent of gene flow between populations in the Caribbean and Gulf of Mexico. The two clades of A. transandeanus in the Pacific are not each other's closest relatives based on our analyses; however, this result could be due to limitations of the mitochondrial marker selected. More variable markers or expanded genomic coverage could lead to recovering the two Pacific populations as monophyletic, as well as potentially increasing genetic differences between Caribbean and Gulf of Mexico populations in the Western Atlantic. Nevertheless, the two clades are quite divergent and possess completely unique haplotypes. As with the Atlantic populations, at present we take a conservative approach and recognize the two Pacific populations as A. transandeanus (Southern Pacific clade) and A. cf. transandeanus (Northern Pacific clade), pending additional molecular and morphological data to substantiate distinctiveness of these lineages.

# 4.2 | Systematics and Biogeography

Gilmore (1992) noted that most larvae of *Awaous* hatching in or entering marine water likely re-enter parental streams, although some may be dispersed *via* ocean currents before returning to freshwater. However, the low genetic divergence and variability within each of the clades of *Awaous* offers the potential that most larvae making it to marine waters do not re-enter parental streams but instead drift in currents and enter other rivers. Widespread lineages across the Pacific basin of Middle America have been observed in other diadromous fishes such as the goby *Sicydium salvini* Ogilvie-Grant, 1884 (Chabarria & Pezold, 2013), the mullet *Dajaus monticola* (Bancroft, 1834; McMahan *et al.*, 2013) and the sleeper *Dormitator latifrons* (Richardson, 1844; Galván-Quesada *et al.*, 2016).

Phylogeographic studies of several diadromous fishes in Middle America have also demonstrated population-level divergence between the Caribbean and Gulf of Mexico (Dajaus monticola, McMahan et al., 2013; Dormitator maculatus (Bloch, 1792), Galván-Quesada et al., 2016; Gobiomorus dormitor Lacepède, 1800; Guimarães-Costa et al., 2017). Awaous banana similarly exhibits this biogeographic pattern, with 1.86% COI divergence between these two clades (i.e., Caribbean and Gulf of Mexico). The Loop Current appears to be a potential barrier around the southern tip of Florida between these two populations of A. banana, as well as the paucity of suitable rivers for habitat on the Yucatan Peninsula, which has also been hypothesized to separate populations of D. monticola (McMahan et al., 2013), with samples of both species from North Carolina recovered as part of the Caribbean clade. These factors in conjunction likely promote the observed genetic differentiation.

While other phylogeographic studies of diadromous fishes in Middle America show the existence of two clades within the Pacific basin, the geographic distributions of these two clades differ across species. The split between populations of *A. transandeanus* in the Pacific basin appear to be based around the Nicoya Peninsula, with localities north and south of the peninsula recovered in separate clades. The distribution of the Northern Pacific clade falls within the Mexican Tropical Pacific and Chiapas-Nicaragua ecoregions (*sensu* Spalding *et al.*, 2007) and the distribution of the southern Pacific clade lies within the Nicoya and Panama Bight ecoregions (*sensu* Spalding *et al.*, 2007). This could partially be explained by the well-documented seasonal coldwater upwellings around this area that coincide with changes in water temperature, ocean current patterns and resource availability such as food (Vargas, 2016). However, as far as we know this biogeographic pattern has not been documented in other widespread marine or diadromous fishes in the Eastern Pacific. Future work aimed at assessing gene flow, admixture and population limits around the Nicoya Peninsula will be important for more thoroughly investigating this pattern.

### ACKNOWLEDGEMENTS

We thank Susan Mochel and Kevin Swagel (FMNH) for assistance with this project. Portions of the molecular data were gathered in the Pritzker Molecular Lab at the Field Museum of Natural History, with support from the Pritzker Foundation. Liz Marchio (SLU) kindly provided information on specimens used in the study. We thank Kevin Feldheim, Erica Zahnle and Isabel DiStefano (FMNH) for assistance with molecular portions of this study. Additional portions of the molecular work were supported by a Smithsonian Tropical Research Institute Short-Term Fellowship awarded to S.R.M. We thank Harilaos Lessios (STRI) for advice and support, as well as Eyda Gómez, Ligia Calderón and Axel Calderón for invaluable lab assistance (STRI). We also thank the following colleagues for administrative or field assistance in the collection of specimens used in this study: Arturo Angulo Sibaja, Carlos Garita, Aaron Geheber, Parker House, Carlos Ramiro Mejía, Enrique Barraza, Veronica Esperanza Melara, Rigoberto Gonzalez, Norman Mercado-Silva and John Lyons.

### AUTHOR CONTRIBUTIONS

C.D.M., W.A.M. and K.R.P led the study design. C.D.M., P.C., O.D-D. and K.R.P. led fieldwork efforts, and all authors participated in fieldwork and acquiring samples. C.D.M., S.R-M. and Y.L. participated in data collection. D.J.E., A.M-C. and D.V-R were involved in analyses. All authors participated in writing and reviewing the manuscript.

### ORCID

Caleb D. McMahan D https://orcid.org/0000-0003-2113-8554 Diego J. Elías D https://orcid.org/0000-0003-4215-0384 Kyle R. Piller D https://orcid.org/0000-0003-1289-9351 Prosanta Chakrabarty D https://orcid.org/0000-0003-0565-0312 Wilfredo A. Matamoros D https://orcid.org/0000-0002-6241-5354

### REFERENCES

Alda, F., Adams, A. J., Chakrabarty, P., & McMillan, W. O. (2018). Mitogenomic divergence between three pairs of putative geminate fishes from Panama. *Mitochondrial DNA Part B*, 3, 1–5. https://doi.org/ 10.1080/23802359.2017.1413288.

- Bancroft, E. N. (1834). In G. Cuvier (Ed.), The animal kingdom, arranged in conformity with its organization, by the Baron Cuvier, member of the Institute of France (2nd ed., p. 680). London, UK: Whittaker and Co..
- Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. *Molecular Biology and Evolution*, 16, 37–48.
- Bleeker, P. (1849). Bijdrage tot de kennis der Blennioïden van den Soenda-Molukschen Archipel, met beschrijving van 42 nieuwe soorten. Verhandelingen van het Bataviaasch Genootschap van Kunsten en Wetenschappen (Vol. 22) (6), 1-40.
- Bloch, M.E. (1792). Naturgeschichte der ausländischen Fische. Sechster Theil. J. Morino & Co., Berlin, Germany 6.
- Broussonet, P. M. A. (1782). Ichthyologia, sistens piscium descriptions et iciones (p. 49). London, UK: Decas I.
- Bussing, W. A. (1998). Peces de las aguas Continentales de Costa Rica (p. 468). Costa Rica. Universidad de Costa Rica.
- Chabarria, R. E., & Pezold, F. (2013). Phylogeography and historical demography of *Sicydium salvini* in the eastern Pacific. *Ichthyological Research*, 60, 353–362.
- Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: A computer program to estimate gene genealogies. *Molecular Ecology*, 9, 1657–1660.
- Díaz-Murillo, B. P., Ruiz-Campos, G., Piller, K. R., McMahan, C. D., Garcíade-León, F. J., & Camarena-Rosales, F. (2017). Assessing populationlevel morphometric variation of the mountain mullet Agonostomus monticola (Teleostei: Mugilidae) across its middle American distribution. Neotropical Ichthyology, 15, e170036.
- Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research*, *32*, 1792–1797. https://doi.org/10.1093/nar/gkh340.
- Evermann, B. W. (1898). Notes on fishes collected by E.W. Nelson on the Tres Marias islands and in Sinaloa and Jalisco, Mexico. Proceedings of the Biological Society of Washington, 12, 1–3.
- Fricke, R., Eschmeyer, W.N., & Van der Laan, R. (2021). Eschmeyer's catalog of fishes: Genera, species, references. Electronic version.
- Galván-Quesada, S., Doadrio, I., Alda, F., Perdices, A., Reina, R. G., García Varela, M., ... Domínguez-Domínguez, O. (2016). Molecular phylogeography and biogeography of the amphidromous fish genus *Dormitator* Gill 1861 (Teleostei: Eleotridae). *PLoS One*, 11, e0153538.
- Gilmore, R. G. (1992). River goby, Awaous tajasica. In C. R. Gilbert (Ed.), Rare and endangered biota of Florida. Volume 2, Fishes (pp. 112–117). Gainesville, FL: University Press of Florida.
- Guimarães-Costa, A., Vallinoto, M., Giarizzo, T., Angulo, A., Ruiz-Campos, G., Schneider, H., & Sampaio, I. (2017). Exploring the molecular diversity of Eleotridae (Gobiiformes) using mitochondrial DNA. *Journal of Applied Ichthyology*, 2017, 1–7.
- Günther, A. (1861). Catalogue of the fishes in the British museum. Catalogue of the acanthopterygian fishes in the collection of the British museum. Gobiidae, Discoboli, Pediculati, Blenniidae, Labyrinthici, Mugilidae, Notacanthi (Vol. 3), London, UK: British Museum (Natural History).
- Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. *Biometrika*, 76, 297–307. https://doi.org/ 10.1093/biomet/76.2.297.
- Huelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. *Science*, 294, 2310–2314. https://doi.org/10.1126/science. 1065889.
- Kumar, S., Stecher, G., Li M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution*, 35, 1547–1549. http://dx.doi.org/10. 1093/molbev/msy096.
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., ... Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics*, 28, 1647–1649. https://doi.org/10. 1093/bioinformatics/bts199.

Lacepède, B.G.E. (1800). Histoire naturelle des poisons. vol. 2.

- Lasso-Alcalá, O. M., & Lasso, C. A. (2008). Revisión taxonómica del género Awaous Valenciennes 1837 (Pisces: Perciformes, Gobiidae) en Venezuela, con notas sobre su distribución y hábitat. Memoria de la Fundación La Salle de Ciencias Naturales, 168, 117–140.
- Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). Partitionfinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution*, 29, 1695– 1701. http://dx.doi.org/10.1093/molbev/mss020.
- Leigh, J. W., & Bryant, D. (2015). Popart: Full-feature software for haplotype network construction. Methods in Ecology & Evolution, 6, 1110–1116.
- Lichtenstein, M. H. C. (1822). Die Werke von Marcgrave und Piso Über die Naturgeschichte Brasiliens, erläutert aus den wieder aufgefundenen Original-Abbildungen. IV. Fische. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, 1820-1821, 267–288.
- Marchio, E. A., & Piller, K. R. (2013). Cryptic diversity in a widespread livebearing fish (Poeciliidae: Belonesox). Biological Journal of the Linnean Society, 109, 848–860.
- McMahan, C. D., Davis, M. P., Domínguez-Domínguez, O., García-de-León, F. J., Doadrio, I., & Piller, K. R. (2013). From the mountains to the sea: Phylogeography and cryptic diversity within the mountain mullet, Agonostomus monticola (Teleostei: Mugilidae). Journal of Biogeography, 40, 894–904.
- McMahan, C. D., Ginger, L., Cage, M., David, K. T., Chakrabarty, P., Johnson, M., & Matamoros, W. A. (2017). Pleistocene to Holocene expansion of the black-belt cichlid in Central America, *Vieja maculicauda* (Teleostei: Cichlidae). *PLoS One*, 12, e0178439.
- Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 2010, 1–8.
- Miller, R. R. (2005). Freshwater fishes of México. Chicago, IL: University of Chicago Press.
- Ogilvie-Grant, W. R. (1884). A revision of the fishes of the genera Sicydium and Lentipes, with descriptions of five new species. Proceedings of the Zoological Society of London, 1884, 153–172.
- Perdices, A., Bermingham, E., Montilla, A., & Doadrio, I. (2002). Evolutionary history of the genus *Rhamdia* (Teleostei: Pimelodidae) in Central America. *Molecular Phylogenetics and Evolution*, 25, 172–189.
- Pereira, L. H. G., Hanner, R., Foresti, F., & Oliveira, C. (2013). Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC Genetics, 14, 20.
- Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in bayesian phylogenetics using tracer 1.7. Systematic Biology, 67, 901–904. https://doi.org/10.1093/sysbio/syy032.
- Richardson, J. (1844). Ichthyology part 1. In R. B. Hinds (Ed.), The zoology of the voyage of H.M.S. Sulphur, under the command of Captain Sir Edward Belcher during the years 1836-42 (pp. 35-44). London, UK. Smith, Elder & Co.
- Rees, D. J., Poulsen, J. Y., Sutton, T. T., Costa, P. A. S., & Landaeta, M. F. (2020). Global phylogeography suggest eucosmopolitanism in mesopelagic fishes (*Maurolicus*: Sternoptychidae). *Scientific Reports*, 10, 20544.
- Rozas, J., Ferrer-M zata, A., Sánchez-Del Barrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP v6: DNA sequence polymorphism analysis of large datasets. *Molecular Biology and Evolution*, 34, 3299–3302.
- Sabaj, M. (2020). Codes for natural history collections in ichthyology and herpetology. *Copeia*, 108, 593–669.
- Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., ... Robertson, J. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. *Bioscience*, 57, 573–583.
- Templeton, A. R., Crandall, K. A., & Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. *Genetics*, 132, 619–633. https://doi.org/10.1093/genetics/132. 2.619.

- Tornabene, L., Chen, Y., & Pezold, F. (2013). Gobies are deeply divided: Phylogenetic evidence from nuclear DNA (Teleostei: Gobiodei: Gobiidae). Systematics and Biodiversity, 11, 345-361.
- Valenciennes, A. (1837). Chapitre IX: Des Gobies. In G. Cuvier & A. Valenciennes (Eds.), Histoire naturelle des poissons. Tome douzième. Suite du livre quatorzième. Gobioïdes. Livre quinzième. Acanthoptérygiens à pectorales pédiculées (Vol. 12, p. 1–138). Paris: Chez F. G. Levrault.
- Vargas, J. A. (2016). Chapter 6 The Gulf of Nicoya estuarine ecosystem. In M. Kappelle (Ed.), *Costa Rican ecosystems* (pp. 139–161). Chicago, IL. University of Chicago Press.
- Watson, R. E. (1992). A review of the gobiid fish genus Awaous from insular streams of the Pacific plate. *Ichthyological Exploration of Freshwaters*, 3, 161–176.
- Watson, R. E. (1996). Revision of the subgenus Awaous (Chonophorus) (Teleostei: Gobiidae). Ichthyological Exploration of Freshwaters, 7, 1–18.
- Weigt, L. A., Baldwin, C. C., Driskell, A., Smith, D. G., Ormos, A., & Reyier, E. A. (2012). Using DNA barcoding to assess Caribbean reef fish biodiversity: expanding taxonomic and geographic coverage. *PLoS One*, 7, e41059.

- Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. N. (2005). DNA barcoding Australia's fish species. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 360, 1847–1857. https://doi.org/10.1098/rstb.2005.1716.
- Ward, R. D., Hanner, R., & Hebert, P. D. N. (2009). The campaign to DNA barcode all fishes, FISH-BOL. *Journal of Fish Biology*, 74(2), 329–356. https://doi.org/10.1111/j.1095-8649.2008.02080.x.

How to cite this article: McMahan, C. D., Elías, D. J., Li, Y., Domínguez-Domínguez, O., Rodriguez-Machado, S., Morales-Cabrera, A., Velásquez-Ramírez, D., Piller, K. R., Chakrabarty, P., & Matamoros, W. A. (2021). Molecular systematics of the *Awaous banana* complex (River gobies; Teleostei:

Oxudercidae). Journal of Fish Biology, 1–10. <u>https://doi.org/10.</u> 1111/jfb.14783